A New Root-Finding Method for Univariate Non-Linear Transcendental Equations With Quadratic Convergence

نویسندگان

چکیده

This paper presents a new algorithm to find non-zero real root of the non-linear transcendental equations. The proposed method is based on combination inverse sine series and Newton-Raphson method. Implementation in MATLAB applied different problems ensure methods applicability. Error calculation has been done for available existing suggested evaluated using number numerical examples results indicate that effective than well-knownmethods. method’s convergence discussed, it shown be quadraticallyconvergence.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot

abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...

15 صفحه اول

Comparison of linear and non-linear equations for univariate calibration.

Univariate data accumulated for the purpose of calibration of chromatographic and spectroscopic methods often exhibit slight but definite curvature. In this paper the performance of a non-linear calibration equation with the capacity to account empirically for the curvature, y = a + bx(m), (m not equal to 1) is compared with the commonly used linear equation, y = a + bx, as well as the quadrati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematics and Applications

سال: 2022

ISSN: ['0975-8607', '0976-5905']

DOI: https://doi.org/10.26713/cma.v13i1.1668